首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antibodies and Fab fragments protect Cu,Zn-SOD against methylglyoxal-induced inactivation
Authors:Jabeen Rukhsana  Mohammad Amin A  Elefano Elizabeth C  Petersen John R  Saleemuddin Mohammed
Institution:Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0551, USA.
Abstract:Methyl glyoxal (MG) is a highly reactive alpha-oxoaldehyde that plays an important role in non-enzymatic glycosylation reactions, formation of Advanced Glycation End products (AGEs) and other complications associated with hyperglycemia and related disorders. Unlike sugars, glycation by MG is predominantly arginine directed, which is particularly more damaging since arginine residues have a high-frequency occurrence in ligand and substrate recognition sites in receptor and enzyme active sites. Using bovine erythrocyte Cu,Zn-superoxide dismutase (SOD) as model enzyme, the potential of anti-enzyme antibodies in imparting protection against MG-induced inactivation was investigated. A concentration- and time-dependent inactivation of SOD was observed when the enzyme was incubated with MG. The enzyme lost over 80% activity on incubation with 5 mM MG for 5 days. More marked inactivation was observed in 24 h when the MG concentration was raised up to 30 mM. The SOD inactivation was accompanied by the formation of high molecular weight aggregates as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI/TOF mass spectrometry). Inclusion of specific anti-SOD antibodies raised in rabbits or monomeric Fab fragments derived thereof offered remarkable protection against MG-induced loss in enzyme activity. The protection, however, decreased with increase in the concentration of MG. SELDI/TOF mass spectrometry also revealed that the antibodies restricted the formation of high molecular weight aggregates. The results emphasize the potential of antibody based therapy in combating glycation and related complications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号