首页 | 本学科首页   官方微博 | 高级检索  
     


Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells
Authors:A K Joshi  S Ahmed  G Ferro-Luzzi Ames
Affiliation:Department of Biochemistry, University of California, Berkeley, 94720.
Abstract:Periplasmic permeases are composed of four proteins, one of which has an ATP-binding site that has been postulated to be involved in energy coupling. Previous data suggested that these permeases derive energy from substrate level phosphorylation (Berger, E. A. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 1514-1518); however, conflicting results later cast doubt upon this hypothesis. Here, we make use of two well characterized periplasmic permeases and of a well characterized unc mutant (ATPase-) to examine this energetics problem in depth. We have utilized the histidine and maltose periplasmic permeases in Escherichia coli as model systems. Isogenic unc strains were used in order to study separately the effect of the proton-motive force and of ATP on transport. These parameters were analyzed concomitantly with transport assays. Starvation experiments indicate that both histidine and maltose transport require ATP generation and that a normal level of delta psi is not sufficient. Uncouplers such as carbonyl cyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol dissipated the delta psi without decreasing the ATP level and without significant effect on these permeases, showing that delta psi is not needed. Inhibition of ATP synthesis by arsenate eliminates transport through both permeases, confirming the need for ATP. In agreement with previous results with the glutamine permease (Plate, C. A. (1979) J. Bacteriol. 137, 221-225), valinomycin plus K+ dissipates delta psi without affecting ATP levels and inhibits histidine transport; however, maltose transport is not inhibited under these conditions. This result is discussed in terms of the artefactual side effects caused by valinomycin/K+ treatment on some periplasmic permeases. Histidine transport is also shown to be sensitive to changes in the cytoplasmic pH. It is concluded that periplasmic permeases indeed have an obligatory requirement for ATP (or a closely related molecule), whereas the proton-motive force is neither sufficient nor essential.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号