首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The production of generalized transducing phage by bacteriophage lambda
Authors:Nat Sternberg
Institution:

Laboratory of Molecular Genetics, NIH, NICHHD, Bethesda MD 21207. and E.I. du Pont de Nemours and Company, Inc., Central Research and Development Department, Experimental Station, E328/145, Wilmington, DE 19898, U.S.A. Tel (302)772-1081

Abstract:Generalized tranduction has for about 30 years been a major tool in the genetic manipulation of bacterial chromosomes. However, throughout that time little progress has been made in understanding how generalized transducing particles are produced. The experiments presented in this paper use phage λ to assess some of the factors that affect that process. The results of those experiments indicate: (1) the production of generalized transducing particles by bacteriophage λ is inhibited by the phage λ exonuclease (Exo). Also inhibited by λ Exo is the production of λdocR particles, a class of particles whose packaging is initiated in bacterial DNA and terminated at the normal phage packaging site, cos. In contrast, the production of λdocL particles, a class of particles whose packaging is initiated at cos and terminated in bacterial DNA, is unaffected by λ Exo; (2) λ-generalized transducing particles are not detected in induced lysis-defective (S?) λ lysogens until about 60–90 min after prophage induction. Since wild-type λ would normally lyse cells by 60 min, the production of λ-generalized transducing particles depends on the phage being lysis-defective; (3) if transducing lysates are prepared by phage infection then the frequency of generalized transduction for different bacterial markers varies over a 10–20-fold range. In contrast, if transducing lysates are prepared by the induction of a λ lysogen containing an excision-defective prophage, then the variation in transduction frequency is much greater, and markers adjacent to, and on both sides of, the prophage are transduced with much higher frequencies than are other markers ; (4) if the prophage is replication-defective then the increased transduction of prophage-proximal markers is eliminated; (5) measurements of total DNA in induced lysogens indicate that part of the increase in transduction frequency following prophage induction can be accounted for by an increase in the amount of prophage-proximal bacterial DNA in the cell. Measurements of DNA in transducing particles indicate that the rest of the increase is probably due to the preferential packaging of the prophage-proximal bacterial DNA.

These results are most easily interpreted in terms of a model for the initiation of bacterial DNA packaging by λ, in which the proteins involved (Ter) do not recognize any particular sequence in bacterial DNA but rather

Keywords:(DNA replication  A exonuclease  transduction frequency  terminase (Ter)  excision-defective prophage  lytic growth  cos sites)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号