首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells
Authors:Balemba Onesmo B  Salter Matthew J  Heppner Thomas J  Bonev Adrian D  Nelson Mark T  Mawe Gary M
Institution:Department of Anatomy and Neurobiology, University of Vermont, Burlington, 05405, USA.
Abstract:Spontaneous action potentials and Ca(2+) transients were investigated in intact gallbladder preparations to determine how electrical events propagate and the cellular mechanisms that modulate these events. Rhythmic phasic contractions were preceded by Ca(2+) flashes that were either focal (limited to one or a few bundles), multifocal (occurring asynchronously in several bundles), or global (simultaneous flashes throughout the field). Ca(2+) flashes and action potentials were abolished by inhibiting sarcoplasmic reticulum (SR) Ca(2+) release via inositol (1,4,5)-trisphosphate Ins(1,4,5)P(3)] channels with 2-aminoethoxydiphenyl borate and xestospongin C or by inhibiting voltage-dependent Ca(2+) channels (VDCCs) with nifedipine or diltiazem or nisoldipine. Inhibiting ryanodine channels with ryanodine caused multiple spikes superimposed upon plateaus of action potentials and extended quiescent periods. Depletion of SR Ca(2+) stores with thapsigargin or cyclopiazonic acid increased the frequency and duration of Ca(2+) flashes and action potentials. Acetylcholine, carbachol, or cholecystokinin increased synchronized and increased the frequency of Ca(2+) flashes and action potentials. The phospholipase C (PLC) inhibitor U-73122 did not affect Ca(2+) flash or action potential activity but inhibited the excitatory effects of acetylcholine on these events. These results indicate that Ca(2+) flashes correspond to action potentials and that rhythmic excitation in the gallbladder is multifocal among gallbladder smooth muscle bundles and can be synchronized by excitatory agonists. These events do not depend on PLC activation, but agonist stimulation involves activation of PLC. Generation of these events depends on Ca(2+) entry via VDCCs and on Ca(2+) mobilization from the SR via Ins(1,4,5)P(3) channels.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号