首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A new subunit of the epithelial Na+ channel identifies regions involved in Na+ self-inhibition
Authors:Babini Elena  Geisler Hyun-Soon  Siba Maria  Gründer Stefan
Institution:Departments of Physiology II and Otolaryngology, Research Group of Sensory Physiology, University of Tübingen, D-72076 Tübingen, Germany.
Abstract:The epithelial Na+ channel (ENaC) is the apical entry pathway for Na+ in many Na+-reabsorbing epithelia. ENaC is a heterotetrameric protein composed of homologous alpha, beta, and gamma subunits. Mutations in ENaC cause severe hypertension or salt wasting in humans; and consequently, ENaC activity is tightly controlled. According to the concept of Na+ self-inhibition, the extracellular Na+ ion itself can reduce ENaC activity. The molecular basis for Na+ self-inhibition is unknown. Here, we describe cloning of a new ENaC subunit from Xenopus laevis (epsilonxENaC). epsilonxENaC can replace alphaxENaC and formed functional, highly selective, amiloride-sensitive Na+ channels when coexpressed with betaxENaC and gammaxENaC. Channels containing epsilonxENaC showed strong inhibition by extracellular Na+. This Na+ self-inhibition was significantly slower than for alphaxENaC-containing channels. Using site-directed mutagenesis, we show that the proximal part of the large extracellular domain controls the speed of self-inhibition. This suggests that this region is involved in conformational changes during Na+ self-inhibition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号