首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rate of opening of a population of Na channels in frog skeletal muscle fibers
Authors:Richard Hahin
Institution:(1) Biological Sciences Department, Northern Illinois University, 60115 DeKalb, IL, U.S.A.
Abstract:Linear Systems convolution analysis of muscle sodium currents was used to predict the opening rate of sodium channels as a function of time during voltage clamp pulses. If open sodium channel lifetimes are exponentially distributed, the channel opening rate corresponding to a sodium current obtained at any particular voltage, can be analytically obtained using a simple equation, given single channel information about the mean open-channel lifetime and current.Predictions of channel opening rate during voltage clamp pulses show that sodium channel inactivation arises coincident with a decline in channel opening rate.Sodium currents pharmacologically modified with Chloramine-T treatment so that they do not inactivate, show a predicted sustained channel opening rate.Large depolarizing voltage clamp pulses produce channel opening rate functions that resemble gating currents.The predicted channel opening rate functions are best described by kinetic models for Na channels which confer most of the charge movement to transitions between closed states.Comparisons of channel opening rate functions with gating currents suggests that there may be subtypes of Na channel with some contributing more charge movement per channel opening than others.Na channels open on average, only once during the transient period of Na activation and inactivation.After transiently opening during the activation period and then closing by entering the inactivated state, Na channels reopen if the voltage pulse is long enough and contribute to steady-state currents.The convolution model overestimates the opening rate of channels contributing to the steady-state currents that remain after the transient early Na current has subsided.
Keywords:Na channels  skeletal muscle  kinetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号