Threshold elemental ratios of carbon and phosphorus in aquatic consumers |
| |
Authors: | Frost Paul C Benstead Jonathan P Cross Wyatt F Hillebrand Helmut Larson James H Xenopoulos Marguerite A Yoshida Takehito |
| |
Affiliation: | Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; Institute of Ecology, University of Georgia, Athens, GA 30602, USA; Department of Botany, University of Cologne, Gyrhofstrasse 15, 50931 Cologne, Germany; Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA |
| |
Abstract: | Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled animal bioenergetics and body elemental composition to estimate TER of carbon and phosphorus (TERC:P) for 41 aquatic consumer taxa. We found a wide range in TERC:P (77–3086, ratio by atoms), which was generated by interspecific differences in body C : P ratios and gross growth efficiencies of C. TERC:P also varied among aquatic invertebrates having different feeding strategies, such that detritivores had significantly higher threshold ratios than grazers and predators. The higher TERC:P in detritivores resulted not only from lower gross growth efficiencies of carbon but also reflected lower body P content in these consumers. Supporting previous stoichiometric theory, we found TERC:P to be negatively correlated with the maximum growth rate of invertebrate consumers. By coupling bioenergetics and stoichiometry, this analysis revealed strong linkages among the physiology, ecology and evolution of nutritional demands for animal growth. |
| |
Keywords: | Bioenergetics carbon efficiency ecological stoichiometry metabolism phosphorus |
本文献已被 PubMed 等数据库收录! |
|