首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time course determination of the effects of rapid and gradual cooling after acute hyperthermia on body temperature and intestinal integrity in pigs
Institution:2. Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907;3. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
Abstract:Rapid cooling after acute hyperthermia may cause a sustained increase in body temperature and exacerbate intestinal damage in pigs. Therefore, the study objective was to evaluate the temporal effects of rapid and gradual cooling on body temperature response and intestinal integrity after acute hyperthermia in pigs. In three repetitions, 54 pigs 83.3 ± 6.7 kg initial body weight (BW)], balanced by sex were exposed to thermoneutral conditions for 6 h (TN; n = 6 pigs/repetition; 21.1 ± 2.0°C), or heat stress conditions (HS; 39.3 ± 1.6°C) for 3 h, followed by a 3 h recovery period of gradual cooling HSGC; n = 6 pigs/repetition; gradual decrease from HS to TN conditions] or rapid cooling HSRC; n = 6 pigs/repetition; rapid TN exposure and cold water (4.0°C) dousing every 30 min for 1.5 h]. Feed was withheld throughout the entire 6 h period, but water was provided ad libitum. Gastrointestinal (TGI) and rectal (TR) temperatures were recorded every 15 min during the HS and recovery periods. Six pigs per repetition (n = 2/treatment) were euthanized and jejunal and ileal samples were collected for histology immediately after (d 0), 2 d after, and 4 d after the recovery period. Data were analyzed using PROC MIXED in SAS 9.4. Overall, rapid cooling reduced TR and TGI (P < 0.01; 0.95°C and 0.74°C, respectively) compared to gradual cooling. Jejunal villus height was reduced overall (P = 0.02; 14.01%) in HSGC compared to HSRC and TN pigs. Jejunal villus height-to-crypt depth ratio was reduced overall (P = 0.05; 16.76%) in HSGC compared to TN pigs. Ileal villus height was reduced overall (P < 0.01; 16.95%) in HSGC compared to HSRC and TN pigs. No other intestinal morphology differences were detected. In summary, HSRC did not cause a sustained increase in body temperature and did not negatively impact biomarkers of intestinal integrity in pigs.
Keywords:gradual cooling  Hyperthermia  Intestinal permeability  Pigs  Rapid cooling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号