首页 | 本学科首页   官方微博 | 高级检索  
     


1,7-Diethylguanosine formation in tRNA chemical ethylation by ethionine and ethylnitrosourea
Authors:D Kanduc
Abstract:The mechanism of ethionine carcinogenesis and more generally the relationship between alkylation of nucleic acids by chemical carcinogens and oncogenesis still remain obscure. In the present study the rat liver tRNA ethylation by L-[ethyl-1-3H]ethionine was reinvestigated by examining in particular the highly radioactive 'pyrimidine-nucleotide-like' fraction found earlier in acid hydrolysates of hepatic tRNA from ethionine-treated rats. The following results were obtained: (1) ultraviolet-spectral and chromatographic analyses showed the presence of 1,7-diethylguanosine in this 'pyrimidine-nucleotide-like' fraction; (2) the dialkyl compound was recovered exclusively in the form of imidazole-ring-opened derivatives. When [1-14C]ethylnitrosourea was used as alkylating agent, the in vivo ethylation pattern of tRNA from various organs of rat showed an analogous radioactive 'pyrimidine-nucleotide-like' fraction as main radioactive product. On the contrary, tRNA ethylation pattern after in vitro reaction with [1-14C]ethylnitrosourea exhibited a main radioactivity peak (85% of the total radioactivity recovered) in coincidence of the chromatographic area of 1,7-diethylguanine. The 1,7-diethylguanosine moieties of tRNA were extremely labile both under physiological and alkaline conditions. The 1,7-diethylguanine-associated radioactivity was completely lost from [14C]ethyl-tRNA after only 7 h incubation at 37 degrees C and pH 7.3, while at pH 11.4 this process was preceded by the conversion of the 1,7-diethylguanosine residues into imidazole-ring-opened derivatives.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号