首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ionic, structural, and temperature effects on DNA nanoparticles formed by natural and synthetic polyamines
Authors:Vijayanathan Veena  Lyall Jasleen  Thomas Thresia  Shirahata Akira  Thomas T J
Institution:Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA.
Abstract:We synthesized analogues of spermine and studied the effects of chemical structure, ionic strength, and temperature on lambda-DNA nanoparticle formation. Effective concentration of polyamines for DNA condensation (EC50) was lowest for hexamines (0.2 microM) and highest for spermine (tetramine, 4.2 microM). The EC50 value increased with Na+]. Dynamic light scattering showed nanoparticles with hydrodynamic radii (R(h)) of 40-50 nm. Effect of temperature on R(h) was measured between 20 and 70 degrees C. For spermine, R(h) remained relatively stable until 50 degrees C and increased significantly at >60 degrees C. In contrast, the hexa- and penta-valent analogues exhibited a gradual increase in R(h) between 20 and 70 degrees C. The nanoparticles were mainly toroidal, as revealed by electron microscopy (EM). EM studies showed changes in morphology and size of condensed structures with an increase in temperature. A possible mechanism for the differential effects of temperature on DNA nanoparticles might involve different modes of DNA-polyamine interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号