首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of production of cloned glucoamylase under conditions of low aeration from recombinant yeast using a SUC2 promoter
Authors:Hyung Joon Cha   Suk Soon Choi  Young Je Yoo  William E. Bentley
Affiliation:

a Department of Chemical Engineering, Seoul National University, Seoul 151-742, Korea

b Department of Chemical Engineering, University of Maryland, College Park, MD 20742, USA

Abstract:The effect of aeration rate on the production of cloned glucoamylase in a recombinant yeast was investigated. This system consisted of Saccharomyces cerevisiae transformed with the 2 μ-based plasmid YEpSUCSTA which contains the SUC2 promoter, the STA signal sequence, and the STA structural gene. In contrast to typical yeast expression reports, high production of cloned glucoamylase was achieved at low aeration level (0·3 vvm). The recombinant yeast grown at 0·3 vvm aeration produced more glucoamylase (0·94 units/ml) than when grown at 0·0 vvm, 0·6 vvm, or 0·9 vvm (9·4, 1·4, and 3·1 times more, respectively). A high dissolved oxygen level early in the cultivation was important for cell growth and a low dissolved oxygen level during the production stage was important for glucoamylase production. In large scale processes for the production of recombinant proteins, the maintenance of aeration and dissolved oxygen at high levels is difficult and expensive. In this work, we have evaluated the coordination of oxygen level with growth and protein production and developed optimal conditions. Since a low aeration rate was optimal, our results demonstrate that the method described at the laboratory scale should be successfully applied at an industrial scale.
Keywords:Saccharomyces cerevisiae   glucoamylase   SUC2 promoter   aeration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号