首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols
Authors:Anter Elad  Thomas Shane R  Schulz Eberhard  Shapira Oz M  Vita Joseph A  Keaney John F
Institution:Evans Memorial Department of Medicine, the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachussetts 02118, USA.
Abstract:Black tea improves endothelial function in patients with coronary artery disease. We sought to determine the responsible components of black tea and elucidate the underlying cell signaling mechanisms. We exposed porcine aortic endothelial cells to components of black tea and found that the polyphenol fraction acutely enhanced nitric oxide bioactivity. This effect involved endothelial nitric-oxide synthase (eNOS) phosphorylation at Ser-1177 and dephosphorylation at Thr-495, consistent with increased eNOS activity. These effects were calcium-dependent, as removal of extracellular calcium prevented eNOS phosphorylation at Ser-1177, whereas inhibition of intracellular calcium mobilization with TMB-8 blunted Thr-495 dephosphorylation. Black tea polyphenol-induced eNOS activation appeared dependent upon the phosphatidylinositol 3-kinase-Akt pathway, as it was significantly inhibited by LY294002 and a dominant negative Akt, respectively. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38 MAPK) with either SB202190 or SB203580 as well as overexpression of a dominant negative p38 MAPKalpha attenuated both eNOS activation and phosphorylation changes in response to black tea polyphenols. Inhibition of p38 MAPKalpha also blunted Akt activation in response to black tea polyphenols, suggesting that p38alpha MAPK is upstream of Akt in this pathway. Finally, a constitutively active mutant of MKK6bE, an upstream kinase for p38 MAPK, enhanced both the basal and stimulated activity of Akt, leading to increased eNOS activity. Taken together, these data identify the p38 MAPK as an upstream component of Akt-mediated eNOS activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号