首页 | 本学科首页   官方微博 | 高级检索  
     


The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases
Authors:Mark A. Lemmon  Joseph Schlessinger  Kathryn M. Ferguson
Affiliation:1.Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104;2.Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520;3.Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
Abstract:The epidermal growth factor receptor (EGFR) was among the first receptor tyrosine kinases (RTKs) for which ligand binding was studied and for which the importance of ligand-induced dimerization was established. As a result, EGFR and its relatives have frequently been termed “prototypical” RTKs. Many years of mechanistic studies, however, have revealed that—far from being prototypical—the EGFR family is quite unique. As we discuss in this review, the EGFR family uses a distinctive “receptor-mediated” dimerization mechanism, with ligand binding inducing a dramatic conformational change that exposes a dimerization arm. Intracellular kinase domain regulation in this family is also unique, being driven by allosteric changes induced by asymmetric dimer formation rather than the more typical activation-loop phosphorylation. EGFR family members also distinguish themselves from other RTKs in having an intracellular juxtamembrane (JM) domain that activates (rather than autoinhibits) the receptor and a very large carboxy-terminal tail that contains autophosphorylation sites and serves an autoregulatory function. We discuss recent advances in mechanistic aspects of all of these components of EGFR family members, attempting to integrate them into a view of how RTKs in this important class are regulated at the cell surface.The epidermal growth factor receptor (EGFR) is often considered the “prototypical” receptor tyrosine kinase (RTK) and has been intensively studied. It is one of a family of four RTKs in humans, the others being ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4 (Fig. 1). EGFR and its relatives are known oncogenic drivers in cancers such as lung cancer (Mok 2011), breast cancer (Arteaga et al. 2011), and glioblastoma (Libermann et al. 1985; Lee et al. 2006a; Vivanco et al. 2012), and inhibitors of these receptors have been among the most successful examples of targeted cancer therapies to date (Arteaga 2003; Moasser 2007; Zhang et al. 2007), including antibody therapeutics (e.g., trastuzumab and cetuximab) and small-molecule tyrosine kinase inhibitors (e.g., erlotinib, gefitinib, lapatinib).Open in a separate windowFigure 1.Schematic representation of EGFR/ErbB family receptors and their ligands. (A) The domain composition of human EGFR is shown. The extracellular region contains four domains: Domain I (amino acids 1–165), domain II (amino acids 165–310), domain III (amino acids 310–480), and domain IV (amino acids 480–620). Domains I and III are closely related in sequence, as are domains II and IV. Shown are representations of the structures of domains I and IV. Domain IV contains two types of disulfide-bonded module (C1 and C2). In C1 domains, a single disulfide constrains an intervening bow-like loop. In C2 modules, two disulfides link four successive cysteines in the patterns C1–C3 and C2–C4 to give a knot-like structure. A short extracellular juxtamembrane (eJM) region separates the extracellular region from the ∼23-amino-acid transmembrane (TM) domain. Within the cell, a short intracellular juxtamembrane (iJM) region separates the tyrosine kinase domain (TKD) from the membrane. A representative EGFR TKD structure is shown. The TKD is followed by a carboxy-terminal largely unstructured tail (amino acids 953–1186) that contains at least five tyrosine autophosphorylation sites. (B) EGFR is one of four members of the EGFR/ErbB family in humans. The other members are ErbB2/HER2, for which no soluble activating ligand is shown; ErbB3/HER3, which has a significantly impaired kinase domain (Jura et al. 2009b; Shi et al. 2010); and ErbB4/HER4. The primary active moiety of the ligands for these receptors is the EGF-like domain, shown as a cartoon structure (top right). EGFR is activated by the EGFR agonists: EGF itself, TGF-α (transforming growth factor α), ARG (amphiregulin), and EGN (epigen). The bispecific ligands regulate both EGFR and ErbB4: HB-EGF (heparin-binding EGF-like growth factor), EPR (epiregulin), and BTC (betacellulin). Neuregulins (NRGs) 1 and 2 regulate ErbB3 and ErbB4, whereas NRG3 and NRG4 appear to be specific for ErbB4 (Wilson et al. 2009).Far from being prototypical, however, it is now clear that regulation of EGFR family members is unique among RTKs (Ferguson 2008; Lemmon 2009; Lemmon and Schlessinger 2010). Structural studies have revealed how the ∼620-amino-acid isolated extracellular region is induced to dimerize after growth factor binding (Burgess et al. 2003) and how the isolated intracellular tyrosine kinase domain (TKD) becomes allosterically activated after forming an asymmetric dimer (Zhang et al. 2006; Jura et al. 2009a; Red Brewer et al. 2009). These findings have typically been interpreted in the context of a model in which EGF family receptors are regulated through ligand-induced receptor homodimerization or heterodimerization, with growth factor binding converting the receptor from an inactive monomeric configuration to an active dimeric conformation (Yarden and Schlessinger 1987; Schlessinger 1988, 2014; Ullrich and Schlessinger 1990). Although this original model has stood the test of time and initiated a whole field of studies of ligand-induced RTK dimerization, recent work has provided highly sophisticated views of a unique mode of allosteric regulation used by EGFR.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号