首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibitors of ribonucleotide reductase alter DNA repair in human fibroblasts through specific depletion of purine deoxynucleotide triphosphates
Authors:Ronald D Snyder
Institution:(1) Stauffer Chemical Company, Farmington, CT, USA;(2) Stauffer Chemical Company, 400 Farmington Avenue, 06032 Farmington, CT, USA
Abstract:Hydroxyurea, deoxyadenosine, pyridine-2-carboxaldehyde thiosemicarbazone, pyrazoloimidazole, 3,5-diamino-1,2,4 triazole (guanazole), 3,4,5-trihydroxy benzohydroxamic acid and 3,4-dihydroxy benzohydroxamic acid were examined for their effects on cellular dNTP pools, DNA excision repair, DNA replication and deoxynucleoside uptake in human diploid fibroblasts. All 7 agents were effective inhibitors of the UV excision repair process in noncycling quiescent cells, but not in rapidly dividing log-phase cells. This differential effect clearly demonstrates dependency upon modulation of cellular purine dNTP pool levels at the level of the reductase. Repair synthesis is shown to be less sensitive to all 7 reductase inhibitors than is replicative synthesis. Studies on cellular uptake of labeled DNA precursors in inhibitor-treated cells support the notion that deoxynucleosides cannot channel into the replicative synthesis process whereas they are readily utilized at repairing sites.Abbreviations HU hydroxyurea - dA deoxyadenosine - TSC pyridine-2-carboxaldehyde thiosemicarbazone - IMPY pyrazoloimidazole - THBA 3,4,5-trihydroxy benzohydroxamic acid - DHBA 3,4-dihydroxy benzohydroxamic acid - UDS unscheduled DNA synthesis - dT thymidine - dNTP deoxynucleoside triphosphate
Keywords:DNA repair  dNTPs  ribonucleotide reductase inhibitors  human fibroblasts
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号