首页 | 本学科首页   官方微博 | 高级检索  
     


Highly sequence-specific binding is retained within the DNA-binding domain of the Saccharomyces castellii Cdc13 telomere-binding protein
Authors:Rhodin Edsö Jenny  Tati Ramesh  Cohn Marita
Affiliation:Department of Cell and Organism Biology, Lund University, Lund, Sweden.
Abstract:The essential protein Cdc13p binds the single-stranded telomeric 3' overhangs in Saccharomyces cerevisiae and takes part in the regulation of telomere length. The DNA-binding domain (DBD) of Cdc13p is structurally established by an oligonucleotide/oligosaccharide-binding (OB)-fold domain. The sequence homolog in Saccharomyces castellii (scasCDC13) was characterized previously, and the full-length protein was found to bind telomeric DNA specifically. Here, the DBD of scasCdc13p was defined to the central part (402-658) of the protein. The region necessary for forming the scasCdc13p-DBD is larger than the minimal DBD of S. cerevisiae Cdc13p. Deletion of this extended DBD region from the full-length protein completely abolished the DNA binding, indicating the importance of the extended region for the correct formation of a binding-competent DBD. The scasCdc13p-DBD bound the same 8-mer minimal binding site as the full-length protein, but an extension of the target site in the 3' end increased the stability of the DNA-protein complex. Significantly, scasCdc13p-DBD showed a retained high sequence specific binding, where the four nucleotides of most importance for the sequence specificity are highly conserved in eukaryotic telomeric repeats. Thus, the unique single-stranded DNA-binding properties of the full-length protein are entirely retained within the isolated scasCdc13p-DBD.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号