首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal and vertical changes in the humus form profile during a primary succession of Pinus sylvestris
Authors:I M Emmer  J Sevink
Institution:(1) Laboratory of Physical Geography and Soil Science, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, The Netherlands
Abstract:The development of the humus form profile during a primary succession of Pinus sylvestris has been studied along chronosequences on dunes and in blow-outs. Attention was given to vertical variation within the humus form and how this changes during profile development. The mor-type ectorganic profile features marked vertical gradients of several soil attributes, while its constituting horizons show no or only small changes of chemical properties during succession. These changes in particular involve increasing calcium and nitrogen concentrations in the organic matter. After an initial high rate of organic matter accumulation in the successive organic horizons, these rates are strongly reduced, suggesting the attainment of a dynamic equilibrium within the time span of the chronosequences on dunes and blow-outs. Blow-outs differ from dunes in the sense that they have a lower amount of organic matter and a higher F/H ratio. This different ratio likely relates to microclimatic conditions less conducive to decomposition.An attempt is made to explain the vertical trends in terms of processes affecting the characteristics of the organic horizons. Main conclusions are that the development of the ectorganic profile results from a combined effect of decay dynamics, rhizosphere processes and atmospheric deposition, which cannot be unentangled quantitatively with the data available. Furthermore, the distinction between F and H horizons has morphological rather than chemical or ecological relevance, as major vertical changes occur within the F horizon.
Keywords:chronosequence  horizon differentiation  mor  Pinus sylvestris  succession  temporal variability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号