首页 | 本学科首页   官方微博 | 高级检索  
     


His-859 is an essential residue for the activity and pH dependence of Escherichia coli RTX toxin alpha-hemolysin
Authors:Cortajarena Aitziber L  Goñi Félix M  Ostolaza Helena
Affiliation:Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
Abstract:Escherichia coli alpha-hemolysin (HlyA) is a toxin protein that, in common with other members of the RTX family, contains a calcium-binding domain consisting of a number of Gly- and Asp-rich nonapeptides (17 in this case) repeated in tandem. Amino acid number 6 in these nonapeptides is almost invariably Asp, and occasionally Asn, but HlyA contains a His residue (number 859 in the chain) in position 6 of the last-but-one nonapeptide. HlyA mutants have been prepared, by site-directed mutagenesis, in which His-859 has been replaced by an Asn (H859N) or by Asp (H859D). HlyA exists in aqueous media in an aggregate-monomer equilibrium, but only the monomer containing bound Ca(2+) (HlyA.Ca) appears to be competent to achieve target membrane insertion and subsequent lysis. In mutant H859N, equilibrium appears to be shifted toward the aggregate, therefore the protein does not exchange Ca(2+) with the aqueous environment, no HlyA.Ca monomers are detected, and the protein lacks any membrane lytic activity. Mutant H859D in turn is almost indistinguishable from the wild-type regarding its calcium binding and membrane lytic activity, however, it differs significantly in its pH dependence. Wild-type HlyA activity decreases sigmoidally with pH, following rather closely the protonation curve of a His residue (apparent pK(a) approximately 6.5). With mutant H859D activity decreases almost linearly with pH and to a smaller extent. It can be concluded that His-859 plays a critical role in several aspects of HlyA activity, namely self-aggregation properties, calcium binding, hemolysis, and pH dependence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号