首页 | 本学科首页   官方微博 | 高级检索  
     


Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene.
Authors:D K Dube  J D Parker  D C French  D S Cahill  S Dube  M S Horwitz  K M Munir  L A Loeb
Affiliation:Department of Pathology, Joseph Gottstein Memorial Cancer Research Laboratory, University of Washington, Seattle 98195.
Abstract:We have obtained 42 active artificial mutants of HSV-1 thymidine kinase (ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) by replacing codons 166 and 167 with random nucleotide sequences. Codons 166 and 167 are within the putative nucleoside binding site in the HSV-1 tk gene. The spectrum of active mutations indicates that neither Ile166 nor Ala167 is absolutely required for thymidine kinase activity. Each of these amino acids can be replaced by some but not all of the 19 other amino acids. The active mutants can be classified as high activity or low activity on two bases: (1) growth of Escherichia coli KY895 (a strain lacking thymidine kinase activity) in the presence of thymidine and (2) uptake of thymidine by this strain, when harboring plasmids with the random insertions. E. coli KY895 harboring high-activity plasmids or wild-type plasmids can grow in the presence of low amounts of thymidine (less than 1 microgram/mL), but are unable to grow in the presence of high amounts of thymidine. On the other hand, E. coli KY895 harboring low-activity plasmids can grow at a high concentration of thymidine (greater than 50 microgram/mL) in the media. The high-activity plasmids also have an enhanced [3H]dT uptake. The amounts of thymidine kinase activity in vitro in unfractionated extracts do not correlate with either growth at low thymidine concentration or the rate of thymidine uptake. Heat inactivation studies indicate that the mutant enzymes are without exception more temperature-sensitive than the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号