首页 | 本学科首页   官方微博 | 高级检索  
     


Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
Authors:P J Muchowski  G J Wu  J J Liang  E T Adman  J I Clark
Affiliation:Department of Biological Structure, University of Washington, Seattle, WA, 98195-7420, USA.
Abstract:Site-directed mutagenesis was used to evaluate the effects on structure and function of selected substitutions within and N-terminal to the core "alpha-crystallin" domain of the small heat-shock protein (sHsp) and molecular chaperone, human alphaB-crystallin. Five alphaB-crystallin mutants containing single amino acid substitutions within the core alpha-crystallin domain displayed a modest decrease in chaperone activity in aggregation assays in vitro and in protecting cell viability of E. coli at 50 degrees C in vivo. In contrast, seven alphaB-crystallin mutants containing substitutions N-terminal to the core alpha-crystallin domain generally resembled wild-type alphaB-crystallin in chaperone activity in vitro and in vivo. Size-exclusion chromatography, ultraviolet circular dichroism spectroscopy and limited proteolysis were used to evaluate potential structural changes in the 12 alphaB-crystallin mutants. The secondary, tertiary and quaternary structures of mutants within and N-terminal to the core alpha-crystallin domain were similar to wild-type alphaB-crystallin. SDS-PAGE patterns of chymotryptic digestion were also similar in the mutant and wild-type proteins, indicating that the mutations did not introduce structural modifications that altered the exposure of proteolytic cleavage sites in alphaB-crystallin. On the basis of the similarities between the sequences of human alphaB-crystallin and the sHsp Mj HSP16.5, the only sHsp for which there exists high resolution structural information, a three-dimensional model for alphaB-crystallin was constructed. The mutations at sites within the core alpha-crystallin domain of alphaB-crystallin identify regions that may be important for the molecular chaperone functions of sHsps.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号