首页 | 本学科首页   官方微博 | 高级检索  
     


Energy filters,motion uncertainty,and motion sensitive cells in the visual cortex: a mathematical analysis
Authors:R. S. Jasinschi
Affiliation:(1) Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742 College Park, MD, USA
Abstract:Energy filters are tuned to space-time frequency orientations. In order to compute velocity it is necessary to use a collection of filters, each tuned to a different space-time frequency. Here we analyze, in a probabilistic framework, the properties of the motion uncertainty. Its lower bound, which can be explicitly computed through the Cramér-Rao inequality, will have different values depending on the filter parameters. We show for the Gabor filter that, in order to minimize the motion uncertainty, the spatial and temporal filter sizes cannot be arbitrarily chosen; they are only allowed to vary over a limited range of values such that the temporal filter bandwidth is larger than the spatial bandwidth. This property is shared by motion sensitive cells in the primary visual cortex of the cat, which are known to be direction selective and are tuned to spacetime frequency orientations. We conjecture that these cells have larger temporal bandwidth relative to their spatial bandwidth because they compute velocity with maximum efficiency, that is, with a minimum motion uncertainty.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号