首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Branchial Cl transport, anion-stimulated ATPase and acid-base balance inAnguilla anguilla adapted to freshwater: Effects of hyperoxia
Authors:M Bornancin  G De Renzis and J Maetz
Institution:(1) Groupe de Biologie Marine du Département de Biologie du Commissariat à l'Energie Atomique, Station Zoologique, F-06230 Villefranche-sur-Mer, France;(2) Present address: Université de Nice, Nice, France
Abstract:Summary Freshwater eel gills are notorious for their limited ability to pump chloride. As a result there is a considerable discrepancy between the Na+ and Cl plasma levels, and plasma HCO3 and blood pH are relatively high in this species.When eels are kept in tanks aerated with pure oxygen, significant alterations in blood acid-base balance, an increase in plasma pCO2 and a decrease in blood pH, are observed. In fish studied after 3 weeks hyperoxia, the decrease in blood pH is compensated by an increase in plasma HCO3 . Such fish exhibit a Cl influx 5 times higher than that observed in normoxic fish. This Cl influx is readily inhibited by addition of SCN to the external medium.An anion-stimulated ATPase activated by HCO3 and by Cl and inhibited by SCN was recently described in membrane fractions of the gills ofCarassius auratus, a fish noted for its high Cl pumping rate. This enzyme is also found in the gills of the eel. While the maximal rates of enzyme activation by HCO3 and by Cl are similar inCarassius andAnguilla, the affinity of the enzyme for Cl is 25 times higher inCarassius. In the microsomal fraction of the hyperoxic eel gills, the maximal anionstimulated ATPase activity remains unchanged but HCO3 affinity decreases by 50%, while Cl affinity increases 5 times. Thus some characteristics of this ATPase seem to be closely related to the Cl pump activity exhibited by the gill in fresh water.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号