首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms
Authors:Noskov Sergei Y  Roux Benoît
Institution:1 Institute for Biocomplexity and Informatics, Department for Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 1N4
2 Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Sciences, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
Abstract:The x-ray structure of LeuT, a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a “snug-fit” mechanism.
Keywords:Na+/K+ selectivity  sodium-coupled neurotransmitter transporters  free energy simulations
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号