Abstract: | A novel approach has been proposed to evaluate the steadiness of polar clusters containing RNA-binding sites on the protein surface. The degree of clusterization of RNA-binding polar residues can be a measure of the steadiness of corresponding polar clusters. Ribosomal protein L25 from E. coli forms a complex with a fragment of 5S rRNA by means of two binding sites S1 and S2. We have examined cluster distribution of RNA-contacting polar residues on the protein surface by using the data of two states: complex state (in crystal and solution) and free state (in solution). For the crystal, the extent of clusterization of binding sites S1 and S2 are estimated to be 74.1 and 100%, respectively. For the free state in solution, the degrees of clusterization of these two sites are 22.8 and 68.6%, respectively. Thus, we have obtained a steadiness quantitative measure of two different types of protein sites for binding to RNA: one for the already existing protein binding site, and the other for the RNA-induced protein binding site. It was shown that definite variations of the protein structure in crystal and in solution can be of significant functional meaning. The result could be applied to the structural behavior of numerous protein complexes with double-stranded RNA and DNA. |