首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the mechanism of alleviation by phenobarbital of the malfunction of an epilepsy-linked GABA(A) receptor
Authors:Krivoshein Arcadius V  Hess George P
Institution:Department of Molecular Biology and Genetics, 216 Biotechnology Building, Cornell University, Ithaca, New York 14853-2703, USA.
Abstract:A mechanism for the alleviation of the malfunction of a mutated (gamma2(K289M)) epilepsy-linked gamma-aminobutyric acid (GABA) neurotransmitter receptor by phenobarbital is presented. Compared to the wild-type receptor, the GABA-induced current is considerably reduced in the mutated (alpha1beta2gamma2(K289M)) epilepsy-linked GABA(A) receptor Baulac, S., Huberfeld, G., Gurfinkel-An, I., Mitropoulou, G., Beranger, A., Prud'homme, J. F., Baulac, M., Brice, A., Bruzzone, R., and LeGuer, E. (2001) Nat. Genet. 28, 46-48]. This is due to an impaired GABA-induced equilibrium between the closed- and open-channel forms of the receptor Ramakrishnan, L., and Hess, G. P. (2004) Biochemistry 43, 7534-7540]. We report that a barbiturate anticonvulsant, phenobarbital, alleviates the effect of this mutation. Transient kinetic techniques with a millisecond-to-microsecond time resolution and the wild-type and mutated receptors recombinantly expressed in mammalian HEK293T cells were used. The efficacy of phenobarbital in potentiating currents elicited by a saturating concentration of GABA is about 3 times higher for the mutated receptor than for the wild type. The results indicate that phenobarbital alleviates the malfunction of the mutated receptor by increasing its channel-opening equilibrium constant (phi(-1) = k(op)/k(cl)) by about an order of magnitude. Phenobarbital changes the channel-opening rate constant (k(op)) by less than 2-fold but decreases the channel-closing rate constant (k(cl)) 8-fold. The dissociation constant of GABA is unaffected. The experiments also indicate that at saturating concentrations of GABA the mutated (gamma2(K289M)) form of the alpha1beta2gamma2 GABA(A) receptor is well suited for a rapid and simple screening of positive allosteric modulators of the receptor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号