首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth, gas exchange, leaf nitrogen and carbohydrate concentrations in NAD‐ME and NADP‐ME C4 grasses grown in elevated CO2
Authors:Daniel R LeCain  Jack A Morgan
Institution:D. R. LeCain (corresponding author, e‐mail;) and J. A. Morgan, USDA‐ARS, Crops Research Laboratory, 1701 Center Ave, Fort Collins, CO 80526, USA.
Abstract:Plants with the C4 photosynthetic pathway have predominantly one of three decarboxylation enzymes in their bundle sheath cells. Within the grass family (Poaceae) bundle sheath leakiness to CO2 is purported to be lowest in the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME, EC 1.1.1.40) group, highest in the NAD-ME (EC 1.1.1.39) group and intermediate in the phosphoenolpyruvate carboxykinase (PCK, EC 4.1.1.32) group. We investigated the hypothesis that growth and photosynthesis of NAD-ME C4 grasses would respond more to elevated CO2 treatment than NADP-ME grasses. Plants were grown in 8-1 pots in growth chambers with ample water and fertilizer for 39 days at a continuous CO2 concentration of either 350 or 700 µl l?1. NAD-ME species included Bouteloua gracilis Lag. ex Steud (Blue grama), Buchloe dactyloides (Nutt.) Engelm. (Buffalo grass) and Panicum virgatum L. (Switchgrass) and the NADP-ME species were Andropogon gerardii Vittman (Big bluestem), Schizachyrium scoparium (Michx.) Nash (Little bluestem), and Sorghastrum nutans (L.) Nash (Indian grass). Contrary to our hypothesis, growth of the NADP-ME grasses was generally greater under elevated CO2 (significant for A. gerardii and S. nutans), while none of the NAD-ME grasses had a significant growth response. Increased leaf total non-structural carbohydrate (TNC) was associated with greater growth responses of NADP-ME grasses. Decreased leaf nitrogen in NADP-ME species grown at elevated CO2 was found to be an artifact of TNC dilution. Assimilation (A) vs intercellular CO2 (Ci) curves revealed that leaf photosynthesis was not saturated at 350 µl l?1 CO2 in any of these C4 grasses. Assimilation of elevated CO2-grown A. gerardii was higher than in plants grown in ambient CO2. In contrast, B. gracilis grown in elevated CO2 displayed lower A, a trait more commonly reported in C3 plants. Photosynthetic acclimation in B. gracilis was not related to leaf TNC or nitrogen concentrations, but A:Ci curves suggest a reduction in activity of both phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39). Some adaptation of stomatal functioning was also seen in B. gracilis and A. gerardii leaves grown in elevated CO2. Our study shows that C4 grasses have the capacity for increased growth and photosynthesis under elevated CO2 even when water and nutrients are non-limiting. While it was the NADP-ME species which had significant responses in the present study, we have previously reported significant growth increases in elevated CO2 for B. gracilis.
Keywords:Andropogon gerardii (Big bluestem)              Bouteloua gracilis (Blue grama)              Buchloe dactyloides (Buffalo grass)  C4  carbohydrate  CO2  growth  NAD‐ME  NADP‐ME  nitrogen              Panicum virgatum (Switchgrass)  photosynthesis              Schizachyrium scoparium (Little bluestem)              Sorghastrum nutans (Indian grass)  stomatal conductance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号