首页 | 本学科首页   官方微博 | 高级检索  
     


Correction of I-cell defect by hybridization with lysosomal enzyme deficient human fibroblasts
Authors:A. d'Azzo   D. J. J. Halley   A. Hoogeveen     H. Galjaard
Abstract:I-cell fibroblasts with a multiple intracellular lysosomal enzyme deficiency were hybridized with cells from patients with different types of single lysosomal enzyme defects. Fusion with GM2 gangliosidosis, type 2, (Sandhoff disease) fibroblasts resulted in a restoration of the hexosaminidase activity, in a normalization of the electrophoretic mobility of the isoenzymes, and in a decreased activity in the medium. Fusion of I-cells with fibroblasts from GM1 gangliosidosis, type 1, led to enhancement of β-galactosidase (β-gal) activity. This complementation must be the result of the presence of normal polypeptide chains in I-cells, whereas the other cell types provide a factor that causes the intracellular retention of the enzymes. Restoration of β-gal was also observed in heterokaryons after fusion of I-cells with β-galactosidase/neuraminidase-deficient (β-gal/neur) variants, indicating that the neuraminidase(s) and the posttranslational modification of β-gal are affected in a different way in I-cell disease and in β-gal/neur variants. Fusion of I-cells with mannosidosis fibroblasts resulted in a restoration of the acidic form of α-mannosidase and in a decrease of the extracellular activity of both this enzyme and the hexosaminidase enzyme, indicating that fusion of I-cells with different types of fibroblasts with a single lysosomal enzyme deficiency not only leads to complementation for one particular enzyme but also to a correction of the basic defect in I-cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号