首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Probabilistic Analysis Indicates Discordant Gene Trees in Chloroplast Evolution
Authors:Claus Vogl  Jonathan Badger  Paul Kearney  Ming Li  Michael Clegg  Tao Jiang
Institution:(1) Department of Computer Science, University of California, Riverside, CA 92521, USA,;(2) Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,;(3) Department of Computer Science, University of California, Santa Barbara, CA 93106, USA,;(4) Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA,
Abstract:Abstract Analyses of whole-genome data often reveal that some genes have evolutionary histories that diverge from the majority phylogeny estimated for the entire genome. We present a probabilistic model that deals with heterogeneity among gene trees, implement it via the Gibbs sampler, and apply it to the plastid genome. Plastids and their genomes are transmitted as a single block without recombination, hence homogeneity among gene trees within this genome is expected. Nevertheless, previous work has revealed clear heterogeneity among plastid genes (e.g., Delwiche and Palmer 1996). Other studies, using whole plastid genomes of various algae and land plants, found little additional heterogeneity (Martin et al. 1998; Adachi et al. 2000). We augment the earlier studies by using a data set of 14 taxa: 6 land plants, 2 green algae, a diatom, 2 red algae and a cryptophyte, the cyanelle of the glaucocystophyte Cyanophora, and the blue–green alga Synechocystis as an outgroup. Contrary to the earlier analyses, we cannot find even a single, dominant consensus tree. Therefore, we formulate a probabilistic model that divides the genes into two sets: those that follow the consensus tree and those that have independent gene trees. No particular tree is supported by more than three-fourths of the genes. But the set of genes that follows a certain tree is fairly independent of data processing and the method of analysis. With one possible exception, we find no evidence for collinear or functionally related genes to follow similar trees. The phylogenetic pattern also seems independent of bias in amino acid composition. Among possible explanations for the observed phenomenon, the hypothesis that different genes have different covarion structures is difficult to assess. But gene duplication may be possible through the inverted or direct repeat regions, while horizontal gene transfer seems less likely. In contrast to green algae and land plants, inverted repeat regions in red algae and in Cyanophora show abundant differences among the copies. Thus, genes may get duplicated when they are recruited into the inverted repeat region and one of the two copies may be lost after leaving the inverted repeat region.
Keywords:Chloroplast Phylogeny Gene duplication Probabilistic model Gibbs sampling
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号