首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of pH on acetylcholine receptor function
Authors:Andrew Palma  Lian Li  Xiaojiang Chen  Pamela Pappone  Mark McNamee
Institution:(1) Department of Biochemistry and Biophysics, University of California, 95616 Davis, California;(2) Department of Animal Physiology, University of California, 95616 Davis, California
Abstract:Summary We have examined the effects of changing extracellular pH on the function of nicotinic acetylcholine receptors fromTorpedo californica using ion flux and electrophysiological methods. Agonist-induced cation efflux from vesicles containing purified, reconstituted receptors showed a monotonic dependence on external hydrogen ion concentration with maximal fluxes at alkaline pH and no agonist-induced efflux at pH's less than sim5. A similar pH dependence was measured for the peak agonist-activated membrane currents measured in microelectrode voltage-clampedXenopus oocytes induced to expressTorpedo receptor through mRNA injection. Half-maximal inhibition occurred at a similar pH in both systems, in the range of pH 6.5–7.0. Single-channel currents fromTorpedo ACh receptors measured in patch-clamp recordings were also reduced in amplitude at acid pH with an apparent pK a for block of <5. Measurements of channel kinetics had a more complicated dependence on pH. The mean channel open time determined from patch-clamp measurements was maximal at neutral pH and decreased at both acid and alkaline pH's. Thus, both channel permeability properties and channel gating properties are affected by the extracellular pH.
Keywords:nicotinic acetylcholine receptors  pH  Torpedo californica  oocyte expression system  reconstitution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号