Abstract: | Important differences in asparagine-linked glycopeptides were observed in vitro cultured fibroblasts derived from chick embryo at different stages of development. Cells from 8-day and 16-day embryos were labeled metabolically with [3H]mannose. Cell surface glycopeptides obtained after mild trypsin treatment were extensively digested with pronase and then chromatographed on concanavalin-A-Sepharose and other immobilized lectins. The most important changes concerned the complex type chains. The ratio between triantennary plus tetraantennary and biantennary chains increased about 2.5-fold from the 8th to the 16th day of development. In the same way, complex chains with bisecting N-acetylglucosamine increased from 8-day to 16-day cells as shown by Phaseolus-vulgaris-erythroagglutinin--agarose chromatography. In 16-day cells, the majority of triantennary chains (60%) with alpha-linked mannose substituted at C2 and C6 positions and biantennary chains (50%) were shown to contain fucosyl (alpha 1----6)N-acetylglucosaminyl structure in the core region by their ability to bind to a lentil lectin affinity column. Similarly, in 8-day cells, triantennary chains (50%) were more fucosylated than biantennary chains (35%). Thus, complex structures exhibited an increased fucosylation of their invariable core from the 8th to the 16th day of development, except for fucosylated triantennary chains which were retained on Phaseolus vulgaris Leucoagglutin and on lentil lectin. These latter structures were present at the surface of 8-day cells and absent at the surface of 16-day cells. After chromatography on Bio-Gel P6 and treatment with endo-beta-N-acetylglucosaminidase H, the [3H]-mannose-labeled glycopeptides were separated by high resolution chromatography into glycopeptides with complex chains and glycopeptides with high-mannose chains. Analysis of the high-mannose oligosaccharides released after endo-beta-N-acetylglucosaminidase H treatment by chromatography on Bio-Gel P4 indicated that the same type of high-mannose chains were present at the surface of 8-day and 16-day cells. Quantification of mannose, galactose and sialic acid residues using gas liquid chromatography was consistent with a decrease of the relative amount of oligomannose chains and an increase of the relative amount of complex type chains in 16-day cells compared to 8-day cells. Thus N-linked oligosaccharides derived from cell surface glycoproteins undergo changes during embryo development resulting in greater complexity of carbohydrate chains. |