首页 | 本学科首页   官方微博 | 高级检索  
     


Factors in Fish Modifying Methylmercury Toxicity and Metabolism
Authors:H. E. Ganther  M. L. Sunde
Affiliation:(1) Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Dr., Madison, WI 53706, USA;(2) Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
Abstract:We report here some results of a long-term (19 month) study with cats fed methylmercury (MeHg) in nutritionally balanced diets based on fish. By using either freshwater pike (low in Se) or canned tuna (high in Se) as the major protein source, basal diets with low levels of MeHg were prepared having different Se content, all Se being of natural origin. The basal diets produced no signs of toxicity or pathological changes over the l9-month period. In cats fed basal diets spiked with medium or high levels of MeHg, evidence for delayed onset of toxic effects from the added MeHg was observed with the tuna diets compared to pike diets. In brain, muscle, and blood, the activity of GSH peroxidase, a selenoenzyme, was decreased by Hg. In liver, substantial accumulation of Hg with Se occured (molar Hg/Se ratio approximately 1.4 to 1.8) but GSH peroxidase activity was unaffected. We suggest that the coaccumulation of Hg and Se in liver measures the extent to which MeHg has been metabolically transformed by metabolism to Hg++, and inactivated by deposition as a Hg/Se complex of low bioavailability. The accumulation of Hg and Se in liver was much greater in cats fed tuna compared to pike, out of proportion to the relatively small differences in Hg and Se content of the tuna and pike basal diets. Some mechanisms are described by which selenium, vitamin E, and other factors might facilitate MeHg breakdown to inorganic Hg during long term low level exposure to MeHg.
Keywords:Methylmercury toxicity  Selenium  Vitamin E  Sulfur amino acids  Arsenic  Marine fish  Tuna  Northern pike  Cats  Glutathione peroxidase
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号