首页 | 本学科首页   官方微博 | 高级检索  
     


Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties
Authors:Ranjit Dev K  Endres Jennifer L  Bayles Kenneth W
Affiliation:1Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205;2Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900
Abstract:The Staphylococcus aureus cid and lrg operons are known to be involved in biofilm formation by controlling cell lysis and the release of genomic DNA, which ultimately becomes a structural component of the biofilm matrix. Although the molecular mechanisms controlling cell death and lysis are unknown, it has been hypothesized that the cidA and lrgA genes encode holin- and antiholin-like proteins and function to regulate these processes similarly to bacteriophage-induced death and lysis. In this study, we focused on the biochemical and molecular characterization of CidA and LrgA with the goal of testing the holin model. First, membrane fractionation and fluorescent protein fusion studies revealed that CidA and LrgA are membrane-associated proteins. Furthermore, similarly to holins, CidA and LrgA were found to oligomerize into high-molecular-mass complexes whose formation was dependent on disulfide bonds formed between cysteine residues. To determine the function of disulfide bond-dependent oligomerization of CidA, an S. aureus mutant in which the wild-type copy of the cidA gene was replaced with the cysteine mutant allele was generated. As determined by β-galactosidase release assays, this mutant exhibited increased cell lysis during stationary phase, suggesting that oligomerization has a negative impact on this process. When analyzed for biofilm development and maturation, this mutant displayed increased biofilm adhesion in a static assay and a greater amount of dead-cell accumulation during biofilm maturation. These studies support the model that CidA and LrgA proteins are bacterial holin-/antiholin-like proteins that function to control cell death and lysis during biofilm development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号