首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis
Authors:Tachon Sybille  Chambellon Emilie  Yvon Mireille
Institution:INRA, UMR 1319 MICALIS, F-78352 Jouy-en-Josas, France
Abstract:Water-forming NADH oxidases (encoded by noxE, nox2, or nox) are flavoproteins generally implicated in the aerobic survival of microaerophilic bacteria, such as lactic acid bacteria. However, some natural Lactococcus lactis strains produce an inactive NoxE. We examined the role of NoxE in the oxygen tolerance of L. lactis in the rich synthetic medium GM17. Inactivation of noxE suppressed 95% of NADH oxidase activity but only slightly affected aerobic growth, oxidative stress resistance, and NAD regeneration. However, noxE inactivation strongly impaired oxygen consumption and mixed-acid fermentation. We found that the A303T mutation is responsible for the loss of activity of a naturally occurring variant of NoxE. Replacement of A303 with T or G or of G307 with S or A by site-directed mutagenesis led to NoxE aggregation and the total loss of activity. We demonstrated that L299 is involved in NoxE activity, probably contributing to positioning flavin adenine dinucleotide (FAD) in the active site. These residues are part of the strongly conserved sequence LA(T)XXAXXXG included in an alpha helix that is present in other flavoprotein disulfide reductase (FDR) family flavoproteins that display very similar three-dimensional structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号