Absence of PmrAB-mediated phosphoethanolamine modifications of Citrobacter rodentium lipopolysaccharide affects outer membrane integrity |
| |
Authors: | Viau Charles Le Sage Valerie Ting Daniel K Gross Jeremy Le Moual Hervé |
| |
Affiliation: | 1Department of Microbiology and Immunology;2Faculty of Dentistry, McGill University, Montreal, QC H3A 2B4, Canada |
| |
Abstract: | The PmrAB two-component system of enterobacteria regulates a number of genes whose protein products modify lipopolysaccharide (LPS). The LPS is modified during transport to the bacterial outer membrane (OM). A subset of PmrAB-mediated LPS modifications consists of the addition of phosphoethanolamine (pEtN) to lipid A by PmrC and to the core by CptA. In Salmonella enterica, pEtN modifications have been associated with resistance to polymyxin B and to excess iron. To investigate putative functions of pEtN modifications in Citrobacter rodentium, ΔpmrAB, ΔpmrC, ΔcptA, and ΔpmrC ΔcptA deletion mutants were constructed. Compared to the wild type, most mutant strains were found to be more susceptible to antibiotics that must diffuse across the LPS layer of the OM. All mutant strains also showed increased influx rates of ethidium dye across their OM, suggesting that PmrAB-regulated pEtN modifications affect OM permeability. This was confirmed by increased partitioning of the fluorescent dye 1-N-phenylnaphthylamine (NPN) into the OM phospholipid layer of the mutant strains. In addition, substantial release of periplasmic β-lactamase was observed for the ΔpmrAB and ΔpmrC ΔcptA strains, indicating a loss of OM integrity. This study attributes a new role for PmrAB-mediated pEtN LPS modifications in the maintenance of C. rodentium OM integrity. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|