首页 | 本学科首页   官方微博 | 高级检索  
     


Lipophagy prevents activity‐dependent neurodegeneration due to dihydroceramide accumulation in vivo
Authors:Yu‐Lian Yu  Yu‐Chin Chang  Wen‐Yu Lien  Hsi‐Chun Chao  Shu‐Yi Huang  Ching‐Hua Kuo  Han‐Chen Ho  Chih‐Chiang Chan
Affiliation:1. Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan;2. School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan;3. Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan;4. Department of Anatomy, Tzu‐Chi University, Hualien, Taiwan
Abstract:Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc‐KO photoreceptors, resulting in activity‐dependent neurodegeneration. Lipid‐containing Atg8/LC3‐positive puncta accumulate in ifc‐KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc‐KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc‐KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc‐KO defects. Human dhCer desaturase rescues ifc‐KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity‐dependent degeneration caused by dhCer accumulation.
Keywords:dihydroceramide  lipophagy  neurodegeneration  photoreceptors  sphingolipid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号