The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability |
| |
Authors: | Alvaro Villarroel Maurizio Taglialatela Ganeko Bernardo-Seisdedos Alessandro Alaimo Jon Agirre Araitz Alberdi Carolina Gomis-Perez Maria Virginia Soldovieri Paolo Ambrosino Covadonga Malo Pilar Areso |
| |
Affiliation: | 1 Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC-UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain;2 Department of Medicine and Health Science, University of Molise, 86100 Campobasso, Italy;3 Departamento de Farmacología, UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain |
| |
Abstract: | The exceptional versatility of calmodulin (CaM) three-dimensional arrangement is reflected in the growing number of structural models of CaM/protein complexes currently available in the Protein Data Bank (PDB) database, revealing a great diversity of conformations, domain organization, and structural responses to Ca2 +. Understanding CaM binding is complicated by the diversity of target proteins sequences. Data mining of the structures shows that one face of each of the eight CaM helices can contribute to binding, with little overall difference between the Ca2 + loaded N- and C-lobes and a clear prevalence of the C-lobe low Ca2 + conditions. The structures reveal a remarkable variety of configurations where CaM binds its targets in a preferred orientation that can be reversed and where CaM rotates upon Ca2 + binding, suggesting a highly dynamic metastable relation between CaM and its targets. Recent advances in structure–function studies and the discovery of CaM mutations being responsible for human diseases, besides expanding the role of CaM in human pathophysiology, are opening new exciting avenues for the understanding of the how CaM decodes Ca2 +-dependent and Ca2 +-independent signals. |
| |
Keywords: | FRET, Fö rster resonance energy transfer CPVT, catecholaminergic polymorphic ventricular tachycardia |
本文献已被 ScienceDirect 等数据库收录! |
|