首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars
Authors:Karczmarczyk Maria  Martins Marta  McCusker Matthew  Mattar Salim  Amaral Leonard  Leonard Nola  Aarestrup Frank M  Fanning Séamus
Institution:Centres for Food Safety & Food-borne Zoonomics, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland.
Abstract:Ninety-three Salmonella isolates recovered from commercial foods and exotic animals in Colombia were studied. The serotypes, resistance profiles and where applicable the quinolone resistance genes were determined. Salmonella Anatum (n=14), Uganda (19), Braenderup (10) and Newport (10) were the most prevalent serovars, and resistance to tetracycline (18.3%), ampicillin (17.2%) and nalidixic acid (14%) was most common. Nalidixic acid-resistant isolates displayed minimum inhibitory concentrations ranging from 32 to 1024 μg mL(-1) . A Thr57→Ser substitution in ParC was the most frequent (12 of the 13 isolates). Six isolates possessed an Asp87→Tyr substitution in GyrA. No alterations in GyrA in a further seven nalidixic acid-resistant isolates were observed. Of these, four serovars including two Uganda, one Infantis and a serovar designated 6,7:d:-, all carried qnrB19 genes associated with 2.7 kb plasmids, two of which were completely sequenced. These exhibited 97% (serovar 6,7:d:- isolate) and 100% (serovar Infantis isolate) nucleotide sequence identity with previously identified ColE-like plasmids. This study demonstrates the occurrence of the qnrB19 gene associated with small ColE plasmids hitherto unrecognized in various Salmonella serovars in Colombia. We also report unusual high-level quinolone resistance in the absence of any DNA gyrase mutations in serovars S. Carrau, Muenchen and Uganda.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号