首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of calcium, temperature and phospholamban phosphorylation on the dynamics of the calcium-stimulated ATPase of canine cardiac sarcoplasmic reticulum
Authors:C Fowler  J P Huggins  C Hall  C J Restall  D Chapman
Affiliation:Department of Protein and Molecular Biology, Royal Free Hospital School of Medicine, London, U.K.
Abstract:Highly purified sarcoplasmic reticulum (SR) has been prepared from dog hearts and has been incubated with the triplet probe erythrosinyl isothiocyanate to specifically label the Ca2+-stimulated ATPase (Ca2+-ATPase) of the SR. The rotational mobility of the Ca2+-ATPase has been studied in this erythrosin-labelled SR using time-resolved phosphorescence polarization. Qualitatively, the mobility of the cardiac Ca2+-ATPase resembles that of skeletal muscle SR Ca2+-ATPase. Addition of Ca2+ to SR affects the mobility of the Ca2+-ATPase in a way consistent with a segment of the ATPase altering its orientation relative to the plane of the membrane. Phosphorylation of phospholamban in cardiac SR by the purified catalytic subunit of cAMP-dependent protein kinase, which is known to increase the activity of the Ca2+-ATPase by deinhibition, also alters measured anisotropy. The changes observed are not compatible with dissociation of the Ca2+-ATPase from phospholamban after the latter is phosphorylated. The data are more consistent with phospholamban associating with the Ca2+-ATPase following phosphorylation, or more complex models in which only the hydrophilic domain of phospholamban binds with and dissociates from the Ca2+-ATPase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号