首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus
Affiliation:1. Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;3. University of Chinese Academy of Sciences, Beijing 100049, China;1. Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;2. Institute for Environmental Sciences, University of Koblenz-Landau, Landau 76829, Germany;3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Photosynthetic response of Microcystis aeruginosa PCC7806 to different concentrations of phosphorus supply was studied so as to elucidate if the declining process of Microcystis bloom under freshwater ecosystem is related to soluble reactive phosphorus (SRP) decrease in water volume. Growth rate of M. aeruginosa PCC7806 was significantly reduced under P-deficient conditions, and its photosynthetic activity in terms of rETRmax (maximum electron transport rate) decreased significantly after 48 h growth, while it kept elevating and reached to a relative stable value when supplied with rich phosphorus of 0.6 mg/L. With the increasing actinic irradiance along the rapid light curves of M. aeruginosa PCC7806 cultured under low-phosphorus level, qP (photochemical quenching) and rETR (relative electron transport rate) decreased greatly, and the increase in qN (non-photochemical quenching) and ΦPS (actual photochemical efficiency of PSII) was obviously inhibited. The affinity of M. aeruginosa PCC7806 to inorganic carbon was reduced evidently in 0.02 mg/L P compared with in 0.6 mg/L P. When P was reduced from 0.6 to 0.02 mg/L, the decreasing rate of rETRmax (77%) was significantly greater than that of photosynthetic carbon assimilation (22%), which indicated that down-regulation of CO2 affinity caused by P-deficiency was, but not the only reason that resulted in the decline of photosynthetic efficiency. Instantaneous low-temperature significantly limited rETRmax under rich-P condition but had no effect on it when P was insufficient, and 1% ethanol could enhance rETRmax at low-P level but did not influence it at rich-P level. These two results proved that the decrease in thylakoid membrane fluidity caused by P-deficiency was another important reason that results in the decline of photosynthetic efficiency of M. aruginosa PCC7806.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号