首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrate and phosphate uptake kinetics of the harmful diatom Coscinodiscus wailesii,a causative organism in the bleaching of aquacultured Porphyra thalli
Institution:1. Tajima Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Sakae 1126-5, Kasumi, Kami, Mikata, Hyogo 669-6541, Japan;2. National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan;3. Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan;1. State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China;2. Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian, 361102, PR China;1. Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany;2. Sugadaira Montane Research Center, University of Tsukuba, 1278-294, Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan;3. Universidad Latina de Costa Rica, Campus San Pedro, Apdo. 10138-1000, San Jose, Costa Rica;4. Department of Environmental Sciences, Faculty of Science, Toho University, Funabashi, Chiba, Japan;5. Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14476 Potsdam, Germany;1. BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland;2. Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland;3. Sorbonne Universités, Université Pierre et Marie Curie – Paris 6, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff cedex, France;4. Instituto de Botânica, Núcleo de Pesquisa em Micologia, Av. Miguel Stéfano 3687, 04301-912, São Paulo, SP, Brazil;5. Institute of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;6. Department of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia;7. Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany;8. Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, United Kingdom;9. School of Biological Sciences FO7, University of Sydney, Sydney, NSW 2006, Australia;1. Department of Environmental Sciences, Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia;2. Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ 20940-040, Brazil;3. School of Biological Sciences, F07, University of Sydney, NSW 2006, Australia;4. CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), Campus des Cézeaux, 24 avenue des Landais, F-63171 Aubiere, France;5. Université Clermont Auvergne, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France;6. Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation;7. St. Petersburg State University, St. Petersburg 199034, Russian Federation;8. CNRS, UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Place Georges Teissier, CS90074, 29688 Roscoff cedex, France;9. Sorbonne Universités, Université Pierre et Marie Curie – Paris 6, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff cedex, France;1. School of Biological Sciences, F07, University of Sydney, NSW 2006, Australia;2. Department of Environmental Sciences, Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia;3. Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, UK;4. LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, 9, France;5. Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Oban PA37 1QA, UK;6. Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation;7. St. Petersburg State University, St. Petersburg 199034, Russian Federation;8. CNRS, UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France;9. Sorbonne Universités, Université Pierre et Marie Curie – Paris 6, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff cedex, France;1. Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d’Ulm, F-75005 Paris, France;2. Imaging Platform, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46, rue d’Ulm, 75230 Paris Cedex 05, France;3. Neuroscience Section, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46, rue d’Ulm, 75230 Paris Cedex 05, France
Abstract:The large diatom Coscinodiscus wailesii is one of the problematic species which indirectly cause bleaching damage to “Nori” (Porphyra thalli) cultivation through competitive utilization of nutrients during its bloom. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of C. wailesii, Harima-Nada strain. Maximum uptake rates (ρmax), obtained by short-term experiments, were 58.3 and 95.5 pmol cell?1 h?1 for nitrate and 41.9 and 59.1 pmol cell?1 h?1 for phosphate at 9 and 20 °C, respectively. The half saturation constants for uptake (Ks) were 2.91 and 5.08 μM N and 5.62 and 6.67 μM P at 9 and 20 °C, respectively. The ρmax values of C. wailesii, much higher than those of other marine phytoplankton species, suggest that C. wailesii is able to take up large amounts of nutrients from the water column. On the other hand, Vmax/Ks (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) values of C. wailesii, which is a better measure to evaluate the competitive ability for nutrient uptake, were low in dominant diatom species. This parameter indicates that C. wailesii is disadvantaged compared to other diatom species in competing for nutrients, and the decreasing nutrient concentrations from winter to spring is an important factor limiting C. wailesii blooming in early spring.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号