首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microfiltration membrane performance in two-chamber microbial fuel cells
Institution:1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;2. Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;3. Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
Abstract:Proton exchange membranes (PEMs) are typically used in two-chamber microbial fuel cells (MFCs) to separate the anode and cathode chambers while allowing protons to pass between the chambers. However, PEMs such as Nafion are not cost-effective. To reduce the cost of MFCs, we examined the performances of cellulose acetate microfiltration membranes in a two-chamber microbial fuel cell using acetate. The internal resistance, the maximum power density and the coulombic efficiency (CE) of the microfiltration membrane MFC (MMMFC) were 263 Ω, 0.831 ± 0.016 W/m2 and 38.5 ± 3.5%, respectively, in a fed-batch mode, while the corresponding values of the MFC using a PEM were 267 Ω, 0.872 ± 0.021 W/m2 and 74.7 ± 4.6%, respectively. We further used the MMMFC for poultry wastewater treatment. The maximum power density of 0.746 ± 0.024 W/m2 and CE of 35.3 ± 3.2% were achieved when the poultry wastewater containing 566 mg/L COD was used, removing 81.6 ± 6.6% of the COD. These results demonstrate microfiltration membranes, compared with PEMs, have a similar internal resistance and reduce pH gradient across the membrane. They parallel PEMs in maximum power density, while CE is much lower due to the oxygen and substrate diffusion. The MMMFC was effective for poultry wastewater treatment with high COD removal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号