首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of aluminium on growth and nutrient uptake of Betula pendula seedlings
Authors:Anders Gö  ransson,Toril Drablø  s Eldhuset
Affiliation:Swedish Univ. of Agricultural Sciences, Section of Forest Ecophysiology, S-75007 Uppsala, Sweden.;Norwegian Forest Research Inst., Division of Forest Ecology, P.O. Box 61, N-1432 Ås-NLH, Norway.
Abstract:The response to aluminium concentrations was evaluated for birch seedlings ( Betula pendula Roth, formerly Betula verrucosa Ehrh.) by using a growth technique that provides stable internal concentrations of nutrients in plants. Aluminium was added as aluminium nitrate and aluminium chloride and pH was kept at 3.8±0.2 by adding HCl or NaOH. The seedlings were grown in two different series of nutrient treatments, either with near-optimum conditions (relative addition rate 25% day−1) or with constant nutrient stress (relative addition rate 10% day−1) before the aluminium addition. Growth reduction occurred at aluminium concentrations greater than 3 m M , and lethal effects at aluminium concentrations greater than 15 m M . In plants subjected to near-optimum conditions before aluminium addition, the internal nutrient concentrations decreased with increasing aluminium concentration for all macronutrients. The concentration of the macronutrients N, K and P decreased gradually with increasing aluminium concentration, while the concentration of Ca and Mg decreased fairly abruptly when aluminium concentrations exceeded 1 m M . The same tendency was observed in nutrient stressed birch seedlings, but the pattern was more scattered. Relative growth rate of the seedlings was not affected by a low Ca/Al ratio. In all treatments, the molar Ca/Al ratio in/on the roots was below 0.2 at the end of the experiments. As decrease in growth occurs only at high aluminium concentrations, there is no reason to suggest that aluminium in acid soils is growth limiting for natural birch stands.
Keywords:Calcium    magnesium    relative growth rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号