首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Counterselection of GATC sequences in enterobacteriophages by the components of the methyl-directed mismatch repair system
Authors:Patrick Deschavanne  Miroslav Radman
Institution:(1) Laboratoire de Mutagénèse, Institut J. Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
Abstract:Summary Weak to severe deficit of GATC sequences in the DNA of enterobacteriophages appears to be correlated with their undermethylation during growth indam + (GATC ade-methylase) bacteria. This observation is corroborated by the sequence analysis showing no evidence for site-specific mutagenicity of 6meAde. The MutH protein of the methyl-directed mismatch repair system recognizes and cleaves the undermethylated GATC sequences in the course of mismatch repair. To enquire whether the MutH function of the methyldirected mismatch repair system participates in counterselection of GATC sequences in enterobacteriophages, we have studied the yield of bacteriophage phivX174 containing either 0, 1, or 2 GATC sequences, in wild type,dam, andmut (H, L, S, U) Escherichia coli. Following transfection with unmethylated DNA containing two GATC sequences, a net decrease in the yield of infective particles was observed in all bacterialmutH + dam strains, whereas no detectable decrease was observed in bacteria infected by DNA without GATC sequence. This effect of the MutH function is maximum in wild type andmutL andmutS bacteria whereas the effect is not significant inmutU bacteria, suggesting an interaction of the, helicase II with the MutH protein.However, indam + bacteria, the presence of GATC sequences leads to an increased yield of infective particles. The effect of GATC sequence and its Dam methylation system on phage yield inmutH bacteria reveals that methylated GATC sequences are advantageous to the phage. These results suggest that the methyl-directed mismatch repair system, and in particular its MutH protein, may have participated in severe counterselection of GATC sequences from enterobacteriophages, presumably, by DNA cleavage or by interfering with DNA replication or packaging when GATC sequences are undermethylated. Coevolution of the Dam and MutH proteins could then account for the loss of GATC sequences from DNA of bacteriophages growing indam + hosts.
Keywords:GATC sequence  Counterselection  Mismatch repair system  Enterobacteriophages  Escherichia coli
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号