首页 | 本学科首页   官方微博 | 高级检索  
     


Slow fluorescence quenching of Type A chloroplasts. Resolution into two components
Authors:Patricia M. Sokolove  T.V. Marsho
Affiliation:Department of Biological Sciences, University of Maryland Baltimore County, Catonsville, Md. 21228 U.S.A.
Abstract:The divalent-cation-specific ionophore A23187 is used to define two components of the slow fluorescence quenching of type a spinach chloroplasts: ionophore-reversible and ionophore-resistant quenching. Ionophore-reversible quenching predominates at relatively low light intensities and approaches saturation as light levels are increased. It is sensitive to uncouplers and to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and is dark reversible. At high light intensities the bulk (> 80%) of slow fluorescence quenching is ionophore-resistant. Ionophore-resistant quenching is stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) at pH 7.6 and by both CCCP and methylamine at pH 9.0. It is insensitive to DCMU and is not reversed in subsequent darkness. Taken together, the two components account for all quenching observed in Type A chloroplasts.Ionophore-reversible quenching is identified with the Mg2+-mediated fluorescence quenching described by Krause (Biochim. Biophys. Acta (1974) 333, 301–313) and by Barber and Telfer (in Membrane Transport in Plants (Dainty, J., and Zimmermann, U., eds.), pp. 281–288, Springer-Verlag, Berlin, 1974). Ionophore-resistant quenching, a first-order process requiring high light, resembles the quenching reported by Jennings et al. (Biochim. Biophys. Acta (1976) 423, 264–274).The resolution of the fluorescence quenching phenomenon into two distinct components reconciles the apparently contradictory observations of these earlier investigations.
Keywords:DCMU   3-(3  4-dichlorophenyl)-1  1-dimethylurea
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号