首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The unique hexokinase of Kluyveromyces lactis. Molecular and functional characterization and evaluation of a role in glucose signaling
Authors:Bar Dorit  Golbik Ralph  Hübner Gerhard  Lilie Hauke  Müller Eva-Christina  Naumann Manfred  Otto Albrecht  Reuter Renate  Breunig Karin D  Kriegel Thomas M
Institution:Technische Universit?t Dresden, Medizinische Fakult?t Carl Gustav Carus, Institut für Physiologische Chemie, Fetscherstr. 74, D-01307 Dresden, Germany.
Abstract:The Crabtree-negative yeast Kluyveromyces lactis is capable of adjusting its glycolytic flux to the requirements of respiration by tightly regulating glucose uptake. RAG5 encoding the only glucose and fructose phosphorylating enzyme present in K. lactis is required for the up-regulation of glucose transport and also for glucose repression. To understand the significance of the molecular identity and specific function(s) of the corresponding kinase to glucose signaling, RAG5 was overexpressed and its gene product KlHxk1 (Rag5p) isolated and characterized. Stopped-flow kinetics and sedimentation analysis indicated a monomer-homodimer equilibrium of KlHxk1 in a condition of catalysis, i.e. in the presence of substrates and products. The kinetic constants of ATP-dependent glucose phosphorylation identified a 53-kDa monomer as the high affinity/high activity form of the novel enzyme for both glycolytic substrates suggesting a control of glucose phosphorylation at the level of dimer formation and dissociation. In contrast to the highly homologous hexokinase isoenzyme 2 of Saccharomyces cerevisiae (ScHxk2), KlHxk1 was not inhibited by free ATP in a physiological range of nucleotide concentration. Mass spectrometric sequencing of tryptic peptides of KlHxk1 identified unmodified serine at amino acid position 156. The corresponding amino acid in ScHxk2 is serine 157, which represents the autophosphorylation-inactivation site. KlHxk1 did not display, however, the typical pattern of inactivation under the respective in vitro conditions and maintained a high residual glucose phosphorylating activity. The biophysical and functional data are discussed with respect to a possible regulatory role of KlHxk1 in glucose metabolism and signaling in K. lactis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号