首页 | 本学科首页   官方微博 | 高级检索  
     


Warming up the system: higher predator feeding rates but lower energetic efficiencies
Authors:OLIVERA VUCIC‐PESTIC  ROSWITHA B. EHNES  BJÖRN C. RALL  ULRICH BROSE
Affiliation:1. Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 10, 64287 Darmstadt, Germany;2. J. F. Blumenbach Institute of Zoology and Anthropology, University of G?ttingen, Berliner Str. 28, 37073 G?ttingen, Germany
Abstract:Predictions on the consequences of the rapidly increasing atmospheric CO2 levels and associated climate warming for population dynamics, ecological community structure and ecosystem functioning depend on mechanistic energetic models of temperature effects on populations and their interactions. However, such mechanistic approaches combining warming effects on metabolic (energy loss of organisms) and feeding rates (energy gain by organisms) remain a key, yet elusive, goal. Aiming to fill this void, we studied the metabolic rates and functional responses of three differently sized, predatory ground beetles on one mobile and one more resident prey species across a temperature gradient (5, 10, 15, 20, 25 and 30 °C). Synthesizing metabolic and functional‐response theory, we develop novel mechanistic predictions how predator–prey interaction strengths (i.e., functional responses) should respond to warming. Corroborating prior theory, warming caused strong increases in metabolism and decreases in handling time. Consistent with our novel model, we found increases in predator attack rates on a mobile prey, whereas attack rates on a mostly resident prey remained constant across the temperature gradient. Together, these results provide critically important information that environmental warming generally increases the direct short‐term per capita interaction strengths between predators and their prey as described by functional‐response models. Nevertheless, the several fold stronger increase in metabolism with warming caused decreases in energetic efficiencies (ratio of per capita feeding rate to metabolic rate) for all predator–prey interactions. This implies that warming of natural ecosystems may dampen predator–prey oscillations thus stabilizing their dynamics. The severe long‐term implications; however, include predator starvation due to energetic inefficiency despite abundant resources.
Keywords:attack rate  food webs  functional response  global warming  handling time  interaction strength  metabolic rate  per capita consumption rate  populations  predator–  prey interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号