首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The dark side of the hyporheic zone: depth profiles of nitrogen and its processing in stream sediments
Authors:ROBERT S STELZER  LYNN A BARTSCH  WILLIAM B RICHARDSON  ERIC A STRAUSS
Institution:1. Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, U.S.A.;2. Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, U.S.A.;3. Department of Biology, University of Wisconsin La Crosse, La Crosse, WI, U.S.A.
Abstract:1. Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5 cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25 cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70 cm. 2. Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5 cm accounted for 68% of the mean depth‐integrated denitrification rate. 3. Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two‐source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5 cm) in Emmons Creek. 4. Vertical profiles showed that nitrate concentration in shallow ground water was about 10–60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73 mg NO3‐N L?1, respectively. 5. Deep ground water tended to be oxic (6.9 mg O2 L?1) but approached anoxia (0.8 mg O2 L?1) after passing through shallow, organic carbon‐rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6. Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments.
Keywords:biogeochemistry  denitrification  ground water  nitrate  peepers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号