GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris |
| |
Authors: | Strømhaug P E Bevan A Dunn W A |
| |
Affiliation: | Institute for Cancer Research, Department of Cell Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway. |
| |
Abstract: | Cells are capable of adapting to changes in their environment by synthesizing needed proteins and degrading superfluous ones. Pichia pastoris synthesizes peroxisomal enzymes to grow in methanol medium. Upon adapting from methanol medium to one containing glucose, this yeast rapidly and selectively degrades peroxisomes by an autophagic process referred to as pexophagy. In this study, we have utilized a novel approach to identify genes required for this degradative pathway. Our approach involves the random integration of a vector containing the Zeocin resistance gene into the yeast genome by restriction enzyme-mediated integration. Cells unable to degrade peroxisomes during glucose adaptation were isolated, and the genes that were disrupted by the insertion of the vector were determined by sequencing. By using this approach, we have identified a number of genes required for glucose-induced selective autophagy of peroxisomes (GSA genes). We report here the characterization of Gsa11, a unique 208-kDa protein. We found that this protein is required for glucose-induced pexophagy and starvation-induced autophagy. Gsa11 is a cytosolic protein that becomes associated with one or more structures situated near the vacuole during glucose adaptation. The punctate localization of Gsa11 was not observed in gsa10, gsa12, gsa14, and gsa19 mutants. We have previously shown that Gsa9 appears to relocate from a compartment at the vacuole surface to regions between the vacuole and the peroxisomes being sequestered. In the gsa11 mutants, the vacuole only partially surrounded the peroxisomes, but Gsa9 was still distributed around the peroxisome cluster. This suggests that Gsa9 binds to the peroxisomes independent of the vacuole. The data also indicate that Gsa11 is not necessary for Gsa9 to interact with peroxisomes but acts at an intermediate event required for the vacuole to engulf the peroxisomes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|