首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anion effects on the liver alcohol dehydrogenase reaction
Authors:M T Kamlay  H R Halvorson  J D Shore
Abstract:The effects of various anions on the rate constant for dissociation of NADH from a binary complex with horse liver alcohol dehydrogenase were evaluated. Phosphate, sulfate, and fluoride had no effect, while nitrate and the other halide ions caused a three- to fourfold increase in the rate constant for NADH dissociation. These results indicate that a ternary enzyme-NADH-anion complex is formed, and from the anion concentration dependence the relative affinities are iodide greater than nitrate and bromide greater than chloride. At high salt concentrations, above 0.2 M, the rate constants for NADH dissociation decreased, which was attributed to a decrease in the activity coefficient of the reactants or "salting in." The rate constant for NADH dissociation from ternary complex with imidazole, which crystallizes in an orthorhombic form rather than triclinic, was also substantially enhanced by anions. This provides an indication that the enhancement is independent of the conformational state of the enzyme complex. Thus, the most likely explanation for the observed enhancement of NADH dissociation is anion interference with binding of the coenzyme pyrophosphate group, which does not occur with larger anions such as phosphate or sulfate. Since NADH dissociation partially limits the turnover of the enzyme, the effect of nitrate on steady-state turnover was determined. A twofold increase was observed at optimal levels of nitrate, at both substrate inhibitory and noninhibitory concentrations of ethanol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号