首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Strategies to improve regenerative potential of mesenchymal stem cells
Authors:Mahmood S Choudhery
Institution:Mahmood S Choudhery, Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Punjab, PakistanMahmood S Choudhery, Department of Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan
Abstract:In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.
Keywords:Hypoxia  Stem cell aging  Growth factors  Heat shock  Caloric restriction
点击此处可从《World journal of stem cells》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号