首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Picosecond time-resolved X-ray crystallography: probing protein function in real time
Authors:Schotte Friedrich  Soman Jayashree  Olson John S  Wulff Michael  Anfinrud Philip A
Institution:Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
Abstract:A detailed mechanistic understanding of how a protein functions requires knowledge not only of its static structure, but also how its conformation evolves as it executes its function. The recent development of picosecond time-resolved X-ray crystallography has allowed us to visualize in real time and with atomic detail the conformational evolution of a protein. Here, we report the photolysis-induced structural evolution of wild-type and L29F myoglobin over times ranging from 100 ps to 3 micros. The sub-ns structural rearrangements that accompany ligand dissociation in wild-type and the mutant form differ dramatically, and lead to vastly different ligand migration dynamics. The correlated protein displacements provide a structural explanation for the kinetic differences. Our observation of functionally important protein motion on the sub-ns time scale was made possible by the 150-ps time resolution of the measurement, and demonstrates that picosecond dynamics are relevant to protein function. To visualize subtle structural changes without modeling, we developed a novel method for rendering time-resolved electron density that depicts motion as a color gradient across the atom or group of atoms that move. A sequence of these time-resolved images have been stitched together into a movie, which allows one to literally "watch" the protein as it executes its function.
Keywords:Myoglobin  Protein dynamics  Protein function  Time-resolved X-ray crystallography  Laue  Picosecond
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号